Minimal Weighted Local Variance as Edge Detector for Active Contour Models
نویسندگان
چکیده
Performing segmentation of narrow, elongated structures with low contrast boundaries is a challenging problem. Boundaries of these structures are difficult to be located when noise exists or intensity of objects and background is varying. Using the active contour methods, this paper proposes a new vector field for detection of such structures. In this paper, unlike other work, object boundaries are not defined by intensity gradient but statistics obtained from a set of filters applied on an image. The direction and magnitude of edges are estimated such that the minimal weighted local variance condition is satisfied. This can effectively prevent contour leakage and discontinuity by linking disconnected boundaries with coherent orientation. It is experimentally shown that our method is robust to intensity variation in the image, and very suitable to deal with images with narrow structures and blurry edges, such as blood vessels.
منابع مشابه
Active Canny: edge detection and recovery with open active contour models
We introduce an edge detection and recovery framework based on open active contour models (snakelets). This is motivated by the noisy or broken edges output by standard edge detection algorithms, like Canny. The idea is to utilize the local continuity and smoothness cues provided by strong edges and grow them to recover the missing edges. This way, the strong edges are used to recover weak or m...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملEdge Integration Using Minimal Geodesics
A new approach of edge integration for shape modeling is presented. Detection of the boundaries of objects in a given gray{level image is performed by a multi{stage procedure that integrates a potential generator and a weighted distance transform. This enables us to nd the global minimum of an active contour model's energy. This approach has an advantage over the classical snakes models since i...
متن کاملFast Non-Rigid Object Boundary Tracking
This paper introduces a method which provides robust tracking results and accurately segmented object boundaries in short computation time. The first step of the algorithm is to apply a novel edge detector on efficiently calculated color probability maps in an object-specific Fisher color space. The proposed edge detector exploits context information by finding the maximally stable boundaries o...
متن کاملA high-throughput active contour scheme for segmentation of histopathological imagery
In this paper a minimally interactive high-throughput system which employs a color gradient based active contour model for rapid and accurate segmentation of multiple target objects on very large images is presented. While geodesic active contours (GAC) have become very popular tools for image segmentation, they tend to be sensitive to model initialization. A second limitation of GAC models is ...
متن کامل